
AIJRA Vol. IX Issue III A www.ijcms2015.co  ISSN 2455-5967 

 

 Constraint Qualifications for Mathematical Programming Problems with 
Abadie Constraints on hermite-hadamard Manifolds  

Hari Krishana  

 

12.1 

Constraint Qualifications for Mathematical Programming Problems with 
Abadie Constraints on hermite-hadamard Manifolds  

 
  
 

*Hari Krishana        
 

Abstract 

In this study of mathematics programming issues with Abadie constraints on Hermite-Hadamard, or 
MPAC-HH, is the focus of this article. Here, proposed a certain prerequisite for the satisfaction of the 
Switching constraint qualification for MPVC-HM as well as the (MPAC-HH)-tailored SCQ for MPVC-
HM. Furthermore, we show that MPAC-HH satisfies the Guignard constraint qualification (GCQ) for 
MPAC-HH under a few light constraints. In the context of Hermite Hadamard Manifolds, we offer a 
number of (MPAC-HH)-tailored constraint qualifiers that guarantee GCQ fulfilment. In addition, we 
improve our analysis and provide some modified adequate criteria that ensure GCQ is met. Several 
duality results between the (MSIPSC) and the associated dual models were developed after the 
Mond-Weir type and Wolfe type dual models of the primal problem (MPAC-HH) were formulated. 
The importance of the resulting results is demonstrated by the incorporation of several non-trivial 
cases. To the best of our knowledge, no research has been done on constraint qualifications for 
mathematical programming issues involving Abadie constraints in a manifold scenario. 
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constraint constraints, Mond-Weir type, Wolfe type dual models, Hermite Hadamard 

1 Introduction 

Numerous operational issues have recently been noticed in a number of branches. Recently, it has 
become clear that several current issues in a variety of scientific and technical fields may be better 
modelled on a manifold space than on a Euclidean one; see [7,5]. Extending and generalising 
optimisation techniques to manifold spaces in addition to Euclidean spaces has a number of benefits 
as well. For instance, the proper use of Riemannian geometry can transform a difficult confined 
optimization problem into a much simpler unconstrained one. Additionally, non-convexity in many 
optimization situations may be addressed by using the appropriate Riemannian metrics (see, for 
example). In many cases (see, for instance), convex sets and convex functions are enlarged to become 
geodesic convex sets and geodesic convex functions. Udri Ste [17] proposed the terms pseudo 
convexity and quasi convexity with a geodesic connotation in the context of Riemannian manifolds. 
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Other optimization-related theories and concepts have recently been expanded by many writers; for 
examples, see and the references listed therein. These range from Euclidean spaces to Riemannian 
manifolds. 

The Frank-Wolfe algorithm, first presented in 1956, is the origin of the conditional gradient 
approach. Marguerite Frank and Philip Wolfe suggested using linear optimisation on a convex 
compact set instead of projection to tackle a class of quadratic restricted optimisation problems. 
Later in 1966, Evgenii Levitin and Boris Polyak [11] looked into the Conditional Gradient (also 
known as the Frank-Wolfe technique) and determined the rate of convergence. They subsequently 
demonstrated that this rate is ideal for the class of smooth convex problems and for all linear 
minimization oracle-based techniques. Since then, the conditional gradient algorithm has received a 
lot of attention from the scientific community because, in some circumstances, solving the linear 
minimization problem over the feasible set (and guaranteeing a presence over the feasible set) is 
computationally more efficient than performing a projection over the feasible set. The conditional 
gradient approach is commonly applied to solve real-world issues in network routing, matrix 
completion, machine learning, federated learning, online optimisation, standard optimisation, and 
enormous-scale optimisation. 

Semi-innite programming problem (SIP) is a phrase used to describe a kind of mathematical 
programming problem that has an infinite number of decision variables but an infinite number of 
constraints that limit the feasible set. The phrase "semi-innite programming" was subsequently 
created by Charnes et al. [22,25]. Haar [25] is given credit for the (SIPfundamental )'s idea. The 
design of digital filters [29], air pollution control, difficulties with lapidary cutting, statistical design, 
planning robotic trajectories, computing eigenvalues, and production scheduling are just a few 
examples of recent real-world problems that have emerged in a variety of scientific and engineering 
fields that have been modelled as SIPs.In the last several decades, research in mathematical 
programming in manifold settings has become one of the most exciting and significant fields. 
Euclidean geometry has been used widely in the field of data analysis and related fields, and many 
academics have represented data points as co-ordinates on the Euclidean space (see [28] and the 
references referenced therein).  

However, a number of academics have emphasized recently that in order to correctly represent data 
in increasingly complex data models, non-Euclidean geometry, particularly Riemannian geometry, 
must be used (see, for example, [12,8] and the references mentioned therein). Additionally, 
Riemannian/Hadamard manifolds and the references they include may be used to express a number 
of optimization issues that emerge in numerous fields of engineering, technology, and science more 
effectively than the Euclidean space setting. There are several significant benefits to generalizing and 
extending many optimization theory approaches from the context of Euclidean spaces to the context 
of manifolds.  The investigations of and provide the inspiration for the current study, which looks at a 
class of (MSIPSC) in a Hadamard manifold context. [32,33]. We provide (ACQ) for (MPAC-HH) inside 
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the Hadamard manifold framework. By using (ACQ), necessary weak Pareto efficiency requirements 
for (MPAC-HH) are created. Furthermore, adequate geodesic quasiconvexity and pseudoconvexity 
assumptions are made to provide weak Pareto efficiency requirements for (MPAC-HH). Many duality 
findings are generated that link (MPAC-HH) with the pertinent dual models after the development of 
dual models of the Mond-Weir type and Wolfe type in regard to the fundamental issue. Many 
fascinating non-trivial cases are illustrated within the context of well-known HH, like the set of all 
symmetric positive definite matrices and the Poincaré half plane, to highlight the relevance of the 
findings established in this article. 

a. The work's primary contributions 

A number of well acknowledged discoveries from the literature are extended in this work for more 
inclusive classes of geodesic convex functions and a number of well-known results from Euclidean 
space are applied to Hermite Hadamard Manifolds. Particularly, the (MSIPSC) equivalent 
requirements from Euclidean spaces to Hermite Hadamard Manifolds are extended by the 
optimality criteria described in this study. [21,34]. To a larger class of programming problems, 
especially (MSIPSC), and to a larger class of geodesic convex functions, the results of this work 
extend the corresponding findings of Tung and Tam [23]. The findings of this study also extend 
those of Upadhyay et al. [16], who reached their conclusions using a manifold scenario and smooth 
multiobjective (SIP) to (MSIPSC) analysis. To the best of our knowledge, this is the first time that 
Hermite Hadamard Manifolds have been used to investigate the duality and optimality requirements 
for the (MSIPSC). 

1.2 Paper Organization 

The following is the format for this essay. Related works are included under Section 2. We examine 
the problem's formulation in Section 3 of the article. In Section 4, we outline the key theoretical 
analysis. In Section 5, we confirm our conclusions with a model experiment. In Section 6, the essay is 
finished. 

2 Literature Review 

The study of conditional gradient approaches has produced a large body of work. A new overview on 
the conditional gradient approach presents the most current research findings in this field. 

For the cone of valid K and   subgradient inequalities, Dadush et al. [33] 
devised a Frank-Wolfe approach. Using iterations and calls to the oracle, main approach produces a 

point matching the conditions that it is L-Lipschitz, K contains a ball of radius r, and  

 is is contained inside the origin-centered ball of radius R. 
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An affine-invariant technique for addressing composite convex minimization problems with a limited 
domain has been developed by Doikov et al. [9]. We provide a generic framework for Contracting-
Point techniques to address a secondary problem that limits the smooth section of the objective 
function to the contraction of the starting region. This framework allows us to build global 
complexity-bound optimisation algorithms of various orders. We demonstrate how one step of the 
pure tensor technique of degree p-1 may be used to create one iteration of the Contracting-Point 
method by using an appropriate affine-invariant smoothness requirement. The functional residual's 
overall rate of convergence as a consequence is, where k is the number of iterations. 

Bertsimas et al. [1] presented a reliable convex optimisation. The solution of this problem is based on 
an extension of the Reformulation-Linearization-Technique and is applicable to generic convex 
inequalities and general convex uncertainty sets. It generates a set of conservative estimations that 
may be used to establish the upper and lower bounds of the ideal goal value. 

Oliveira et al. [20] have offered a localization toolset to set risk boundaries in two specific 
applications. The first includes decreasing portfolio risk and conditional value-at-risk constraints. 
Imagine that every high-return asset contains a dimension g component that is unknown to the 
investor but has a far lower risk than the other components. The Sample Average Approximation 
(SAA) problem rates demonstrate that a term proportional to g only influences the statistical rate 
when "risk inflation," brought on by a multiplicative component, does so.  

A non-smooth stochastic convex optimisation problem with constraints was created by Lobanov et 
al. [19]. The Zero-Order Stochastic Conditional Gradient Sliding (ZO-SCGS) approach is a gradient-
free Frank-Wolfe type algorithm that is based on an accelerated batched first-order Stochastic 
Conditional Grad Sliding method. Surprisingly, this method outperforms SOTA algorithms in the 
smooth environment when term oracle calls are employed. Both the class of smooth black box issues 
and the class of non-smooth problems are resilient to it. We put our theoretical findings to the test in 
the real world. 

3. Backgrounds and Preliminaries in Mathematics 

It is important to remember a quick rundown of the terminology, notation, and attributes utilised 

throughout this work before starting. Considering that interval  to be the total of all intervals

, the following follows: 

  

where compact subset  is a real interval . When  occurs, the interval  displays 

degeneration. In the case of  or , we say that  is positive or negative. We use  and 
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 to represent the negative and positive intervals, respectively, also identify the group of all 

intervals by  of R. The inclusion  is indicated as follows: 

. 

Choose any two real numbers,  and , and the interval  is provided as follows: 

, 

, 

,  

,  

where,  

.  

The Hausdorff-Pompeiu distance for intervals is given by: 

,  

The metric space A ( , ) is generally complete. 

Definition 3.1. [19]. Think of  as a space for probabilities.  is considered to as a 

random variable if it is P-measurable. If  the function  is a random variable, the 

function  is referred to as a stochastic process. 

3.1. Properties of stochastic process 

Continuous: A function  is ongoing and periodic , if  
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The probability limit is indicated by  

Constant mean square: A function is known as a mean square continuous on , if 

 

where expectation of random variable is denoted as . 

Mean square differentiable: If the random variable  behaves in such a way 

that , a function  is said to be mean square differentiable at . 

 . 

Mean square integral:  If  is a random variable and  is a stochastic 

process, then we may say that  if it has, for each division of the typical sequence of the 

interval and , then mean square-integrable. 

 . 

   

Definition 3.2:  See [14]. Think of  as a space for probabilities. a random procedure If 

 and , we have what is known as a convex stochastic process ( ). 
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Definition 3.3.  See [14]. Think about , an unpredictable procedure. If 

 and , we get what is known as an H-convex stochastic process 
, 

     

Definition 3.4. Think about , a an unpredictable procedure. If  

and  are present, then  is an H-Godunova-Levin (GL) convex stochastic 
process. 

     

Remark 3.1.  

1. If , the outcome for the stochastic Q-function is provided by Definition 3.4. 

2.  If , Then, the result for stochastic H-convex is given by Definition 3.4. 

3. If  the stochastic Godunova-Levin function's outcome is thus provided by 
Definition 3.4. 

4. If  the outcome for the stochastic S-convex function is thus given by Definition 
3.4. 

5. If , Hence, the outcome for stochastic S is provided by Definition 3.4, Godunova-
Levin operation. 

3.2. Hermite-Hadamard inequality for the interval 

Theorem 3.1. Let , 
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a feature For I-V-F,  is referred to as the H-GL stochastic mean square integrable 

process. If , then  for every . The following 
disparity is met almost everywhere. 

 .            
(3.1) 

Proof. By supposition we have, 

 . 

It follows that 

              
(3.2) 

              
(3.3) 

Consequently 

              
(3.4) 

Similarly 

              
(3.5) 
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This implies that, 

                             (3.6) 

From Definition 3.1, we have, 

                              (3.7) 

With integration over (0, 1), we have, 

                           
(3.8) 

Accordingly, 

                                                 (3.9) 

Now combining Eqs (3.8) and (3.9) we get required result 

              
(3.10) 

Remark 3.2 

Theorem 3.1 provides the following conclusion for the I-V-F P-convex stochastic process if we set 

: 

. 
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Theorem 3.1 provides the following conclusion for the I-V-F convex stochastic process if we set 

: 

.   

Theorem 3.1 provides the outcome for the I-V-F S-convex stochastic process if we set , 

.   

If  so, Theorem 3.1 provides Ohud Almutairi's finding [5], then Theorem 3.1 is true. 

Instance: 

Let for , and be 

defined by ]. Then, 

, 

. 

 . 

As a result, 
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 . 

Hence proved. 

Theorem 3.2.  

Let and . Two functions are mean square 

integrable h-convex stochastic processes for IVFS. For every , if 

 and . Almost everywhere, the 
following inequality is satisfied [31], 

                        
(3.11) 

Where, 

  

  

Proof 

Consider  then, we have, 

               
(3.12) 

                 
(3.13) 

Then, 

             
(3.14) 
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With integration over (0,1) we have, 

                
(3.15) 

                
(3.16) 

                
(3.17) 

=[
 

   
∫       

 

 
         

 

   
∫  

 
     

 

 
 
 
       ]            (3.18) 

                        (3.19) 

                    (3.20) 

It follows that 

                         
(3.21) 

The theorem is proved. 

Example 3.1. Let 

, , . If are defined as, 
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.  

Then we have 

.  

  

And 

 

Since, 

 

Consequently theorem 3.2 is verified. 

4. Main Results 

Theorem 4.1 

Let  represent a weakly efficient Pareto solution of (MSIPSC) where ((P, Q)-ACQ) is fulfilled 

for some . Assume that the Pareto optimal weak solution (MWP). Assume 

that each of the Theorem 3.2's hypotheses is accurate. Then there is . 

Proof  

We presumptively believe  in contrast to the stated hypothesis. Given the criteria, ((P, Q)-

ACQ) is met for some a weakly Pareto efficient solution of (MSIPSC) exists at and z. 
Furthermore, the following is accurate: 
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. 

Additionally, Theorem 3.2 implies that  is a Pareto-effective response to (WDP). Considering 

 and , we have 

  

This seems incongruous. As a result, the proof is finished. 

Remark 4.1 (a) For a broader class of geodesic convex functions, Theorems 3.1 and 3.2 expand 
Propositions of Tung and Tam's [13] smooth multiobjective (SIP) to (MSIPSC) on manifold setting, 
which is a subset of optimisation issues. 

(b) Upadhyay et al.'s Theorem 4.1, which transforms smooth multiobjective (SIP) into (MSIPSC) on a 
manifold setting, is a part of a larger class of optimisation issues. 

We demonstrate the importance of the Mond-Weir dual model for (MSIPSC) discoveries in the 
following numerical example. 

Example 4.1. Assume that problem (P) in Example 4.1. The Mond-Weir dual problem has the 
following formulation in relation to problem (P): 

,                   
(4.1)  

subject to 

                          
(4.2) 

, 
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where,  ,and . The MW feasible set is 

represented by . 

Select the reasonable argument first . It is evident from Example 4.1 that (ACQ) 

holds [15] at and is a Pareto-effective solution to (P). Let we give a definition: 

 . 

Then, it follows that  

 . 

As a result, .We select , , 
such that, 

  

This indicates that . We also have . Furthermore, it is possible to 
confirm strong duality theorem's (Theorem 5.2) presumptions are all true. This demonstrates that 

 is a weakly efficient Pareto solution of (MW). 
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4.1. Wolfe type dual related to MPAC-HH 

Let and

. We denote , where

 . 

Similar to our main problem (MSIPSC), the related Wolfe type dual problem (abbreviated as (WDP)) 
is formulated as follows: 

                        
(4.3) 

subject to, 

              
(4.4) 

  

 stands for the set containing each and every possible solution to the Wolfe type dual problem 
(WDP). 

Now that the auxiliary function  has been defined, the discussion that follows will be 
made easier [18] , 
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(4.5) 

In the following theorem, we show a weak duality link between our primary issue (MSIPSC) and by 
making use of geodesic pseudoconvexity assumptions (WDP). 

Theorem 4.2. Let  and . The function is a geodesic pseudoconvex function

 at, let's say. The following are the next steps: 

 

.                   
(4.6) 

Proof.  Let's assume that the following inequality is true, which is the opposite of the stated 
hypothesis: 

. 

Consequently, the following inequalities follow for every : 

  

Given the (WDP)'s feasibility requirements, we know that , and . As a 
result, we have the following: 
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(4.7) 

Hence, we have . Assuming the function adheres to the geodesic pseudoconvexity 
assumption, we obtain, 

  

On the other hand, we have . As a result, we have some grad

,

 ,which satisfy the following, 

  

which conflict. The proof has been completed. 

By using the geodesic rigorous pseudo convexity requirement, we establish another weak duality 
connection in the following corollary that links our main problem (MSIPSC) with (WDP). The 
demonstration of the corollary proceeds similarly to the proof of Theorem 4.2. 

4.2. Mond-Weir Type Dual Model Related to (MSIPSC) 

Let . We denote 

, where  . 
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Similar to our main issue (MSIPSC), the related Wolfe type dual problem (abbreviated as (WDP)) is 
presented as follows: 

 

subject to, 

  

                    
(4.8) 

  

 stands for the set  of all possible solutions to the Mond-Weir dual problem (MWP). The 
following theorem connects our primary problem (MSIPSC) with (MWP) by establishing a weak 
duality relation utilizing the geodesic pseudo convexity and geodesic quasiconvexity assumptions 
[14]. 

Theorem 4.3. Let  and . Assume that the operation are function 

of geodesic pseudoconvex at  and the functions ,

, , 

are geodesic quasiconvex at . Further, we assume that, 
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Then we have the following, 

 

Proof. 

Let and  be, arbitrary solutions of (NSIMPMC) and (MWP). On the other hand, 
we presumptively satisfy the following inequality: 

                        (4.9) 

As a result, we have the following, 

.                          
(4.10) 

By invoking the geodesic pseudoconvexity assumption on at , we arrive at the 
following inequalities, 

                
(4.11) 

We have  based on the theorem's presumptions. As a result, we get the next inequality 
from (4.12). 

                
(4.12) 

Then, based on the (MSIPSC) and (MWP) feasibility requirements, we deduce that 
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(4.13) 

Given the limits on the index sets and the geodesic quasiconvexity requirements mentioned in the 
hypothesis, it follows from (31) that, 

                
(4.14) 

As a result, we have the following: 

                
(4.15) 

Adding (31) and (33), we get, 
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This contradicts the statement that . As a consequence, the proof is done. Using the geodesic 
stringent pseudoconvexity and geodesic quasiconvexity assumptions, we construct a weak duality 
link between our primary issue (MSIPSC) and (MWP) in the subsequent corollary [4]. 

Corollary 4.1. Let  and . Let us assume that the function are 

geodesic pseudoconvex function at  and the functions ,

, , 

are geodesic quasiconvex at . Further, we assume that, 

  

Then we have the following, 

 

The following theorem (MSIPSC) shows that the corresponding Mond-Weir type dual problem 
(MWP) and our preferred primal problem are closely related. 

5 Numerical Results 

This section compares relaxations of regression issues using numerical data. We specifically address 
calculations for problems with sparse least squares regression with all pairwise (second-order) 
interactions and stringent switching requirements [40] in section 5.1 and logistic regression in 
section 5.2. The MATLAB platform solver is used to handle the Wolfe type dual model and Mond-
Weir type dual model of the problem on a laptop with a 2.0 GHz Intel(R) Core(TM) i7-8550H CPU and 
16 GB of main memory. 

5.1. Least squares regression with switching constraints 

This section focuses on issues with least squares regression's switching limitations. It is customary 
procedure to either use an appropriate convex relaxation directly when computing estimators for 
statistical inference issues or to round the result obtained from such convex relaxations; for 
examples, see [31,2]. Therefore, we concentrate on the optimality gap offered by such techniques as a 
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proxy to assess the efficacy of the developed estimators. In section 5.3, we describe an easy rounding 
heuristic that makes sure the results match the switching criteria and revisit the relaxations used in 
section. 

5.2. Formulations 

Given observations , we consider relaxations of the problem, 

                
(5.1) 

S.t                    
(5.2) 

                  
(5.3) 

                   
(5.4) 

                 
(5.5) 

                   
(5.6) 

We standardize the data so that all columns have 0 mean and norm 1, i.e.,  , for all

, and for all  (where ) and  .Note that constraints 
(29d)-(29e) are totally unimodular, hence conv(Q) in (24d) can be obtained simply by relaxing 
integrality constraints to 0 ≤ k ≤ 1. 

Rank1 Using the "unconstrained" convexification described in Proposition 3, inequalities (4.10) are 
found for all sets T of cardinality 2. This definition was first put out in [3]. The consequent 
semidefinite restrictions have the following form: 
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(5.7) 

Or 

                 
(5.8) 

For any sets T connected by switching constraints, hier inequalities (5.4) exist. We specifically add 
constraints with |T| = 2 of the following type to constraints (5.6): 

.                    
(5.9) 

In addition, we add constraints involving pairs of variables and of of the type, to constraints 

(39), which link the three variables , and , 

.                 
(5.10) 

Additionally, constraints involving identical pairs of variables and are introduced [28]. As a 
result of adding constraints that take into account all three variables at once, constraints with |T| = 3 
of the form, 
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 .                          
(5.11) 

1+ Rank Swit Each and every disparity between Rank1 and Swit. 

5.3. Gaps and Upper Bounds 

We use a straightforward rounding heuristic to recover a workable solution to problem (4.11), 

starting with the convex relaxation's solution. We round and fix it to the nearest integer, 
observing that a rounded solution always satisfies hierarchy constraints (5.1)-(5.9), and then solve 

the ensuing convex optimisation problem in terms of . We can constrain the optimality gap

 as given the objective value of the convex relaxation and the heuristic

. 

5.4. Results 

The distribution of the amount of time required to answer each dataset's regression issues is shown 
in Figure 1. Because it is the simplest relaxation, it seems sense that the ideal viewpoint formulation 
(4.5) is the quickest. Additionally, we observe that formulations with rank-one constraints (with or 
without Switching strengthening) are computationally more challenging, taking four times longer to 
solve in the case of Crime and twice as long in the other five cases. The formulation Swit, on the other 
hand, is significantly faster, requiring just 10–20% longer than viewpoint in the other circumstances 
while still incorporating Switching constraints but without the rank-one constraints. There are rank-

one restrictions , but there are  switching restrictions that must be 
included. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 

Figure 5.1: Computational times in seconds (a) Crime (b) diabetes (c) Wine quality (d) Forecasting 
orders (e) Housing and (d) Bias_correction 
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Since Swit has a similar computational cost to perspective and rank1+swit has about the same 
computational cost as rank1, we can see that the switching strengthening may produce large gains 
without any drawbacks (whereas rank1 requires 2-4 times more computational overhead). In reality, 
switching strengthening is tailored especially to issue (4.11), whereas rank1 is more general but uses 
no structural information from the restrictions. 

6. Conclusions. In this article, a specific subset of multiobjective mathematics programming issues 
with equilibrium constraints on Hadamard manifolds are examined. Under extended geodesic 
convexity constraints, the authors define the Wolfe type dual model and the Mond-Weir type dual 
model linked to the issue, and they establish the weak, strong, and rigorous converse duality 
relations that connect the problem and the dual models. These ideas may be used to create a fresh 
method for convex optimization. We anticipate that additional writers will be able to protect their 
positions in a variety of scientific domains by adopting this idea. Many well-known conclusions from 
Euclidean space that have been proven in the literature are extended in this article to the Hadamard 
manifold, a more generic space, and generalized for additional geodesic convex function classes. The 
optimality criteria developed in this study, in particular, extend to Hadamard manifolds the 
comparable conditions derived in [23] from Euclidean spaces. The findings of this work further 
broaden the analogous results of [19] across a range of scenarios, from smooth multiobjective (SIP) 
to a larger class of programming problems, namely (MSIPSC) 

In further work, we want to extend the duality conclusions reached in this paper to non-smooth 
optimization issues with equilibrium constraints on Hadamard manifolds. Studying duality solutions 
for mathematical programming issues with the Abadie constraint on Hermite-Hadamard would also 
be a fascinating task. 
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